It has been estimated that presently pests cause 30-50% of yield losses to agricultural crops in developing countries and these rates are likely to increase with climate change. Although much attention has been given to the impacts of climate change on insect abundance and severity in temperate regions, little is known about potential impacts in tropical regions. Furthermore, recent studies suggest that climate change may favour pests over their natural predators, disrupting classical biocontrol of insect pests.
To address this gap, a new software, Insect Life Cycle Modelling (ILCYM), was developed by The International Potato Center (CIP) to better estimate and to help mitigate the impacts of global warming on pest risk to food crops.
How is ILCYM used?
The “model builder” software supports the development of insect phenology models based on experimental temperature data of a specific insect, explained the model developers in a report, published in the CGIAR page. The module also provides tools to analyse an insect’s life-table and to validate existing models. The second module implements the CIP-developed temperature-driven phenology model in a GIS environment and allows for regional as well as global spatial simulation of insect activities (“pest risk mapping”). In its present version the software uses the phenology model of the potato tuber moth, Phthorimaea operculela, as an example, but can also be applied to other insect species.
The effects of the 1997 El Niño event on Peru provided a preview of what global warming may bring. Temperatures on the Peruvian coast were about 5°C higher than average and insect pest populations flourished, which prompted farmers to respond by applying high doses of pesticides every 2-3 days.
The ILCYM software is a new tool, which, it is hoped, will facilitate the development of insect phenology models and mapping of risk scenarios, highlighting places where training and adaptation efforts can be most effective.
CIP is coordinating further development of ILCYM and its application to a wider range of insects in a new project. Collaborators include the International Centre of Insect Physiology and Ecology, the International Institute of Tropical Agriculture (IITA), the University of Hohenheim, Germany, under the CGIAR System-wide Program on Integrated Pest management, and partners at national agricultural research institutes and universities in Africa.
Link to CIP webpage.
Link to CGIAR System-wide Program on Integrated Pest Management (SP-IPM) report page.
Link to CGIAR’s climate change page.
Link to datasheet on potato tuber moth in the Plantwise knowledge bank.
2 Comments
Leave a Reply
Related News & Blogs
How climate smart agriculture can lead to ‘triple wins’ for farmers threatened by climate change
Image: Pexels Global food consumption is predicted to increase by 51% by 2050. This is a profound challenge for our agrifood systems, which will only be made harder by the increased pressures of climate change on food security. In addition, agriculture…
29 January 2024
[…] Predicting the effects of global warming on insect pests (plantwise.org) […]
[…] the tomato leaf miner by Katherine Cameron How plant diseases attract plant pests by Abigail Rumsey Predicting the effects of global warming on insects by Vera Barbosa Cassava – another superhero unmasked? by Claire Shepherd Cucumber Mosaic Virus […]