Plantwise visits ‘open source GIS’ conference, FOSS4G 2013

On Thursday 19th November, I attended the ‘Free and Open Source Software For GIS’ (FOSS4G) conference in Nottingham, UK with two of my colleagues from the Plantwise Knowledge Bank. The conference, organised by OSGeo, had the strapline “Geo For All” and aimed to show that the tools that this Geographic Information Systems (GIS) community is developing can be, and are being, used by people in many different areas of work. We were visiting the conference to get an update on what open source software is now available, and how other people are tailoring and combining these packages to suit their needs. Continue reading

Predicting the effects of global warming on insect pests

It has been estimated that presently pests cause 30-50% of yield losses to agricultural crops in developing countries and these rates are likely to increase with climate change. Although much attention has been given to the impacts of climate change on insect abundance and severity in temperate regions, little is known about potential impacts in tropical regions. Furthermore, recent studies suggest that climate change may favour pests over their natural predators, disrupting classical biocontrol of insect pests.

To address this gap, a new software, Insect Life Cycle Modelling (ILCYM),  was developed by The International Potato Center (CIP) to better estimate and to help mitigate the impacts of global warming on pest risk to food crops.

How is ILCYM used?

The “model builder” software supports the development of insect phenology models based on experimental temperature data of a specific insect, explained the model developers in a report, published in the CGIAR page. The module also provides tools to analyse an insect’s life-table and to validate existing models. The second module implements the CIP-developed temperature-driven phenology model in a GIS environment and allows for regional as well as global spatial simulation of insect activities (“pest risk mapping”). In its present version the software uses the phenology model of the potato tuber moth, Phthorimaea operculela, as an example, but can also be applied to other insect species.

The  effects of the 1997 El Niño event on Peru provided a preview of what global warming may bring.  Temperatures on the Peruvian coast were about 5°C higher than average and insect pest populations flourished, which prompted farmers to respond by applying high doses of pesticides every 2-3 days.

The ILCYM software is a new tool, which, it is hoped, will facilitate the development of insect phenology models and mapping of risk scenarios, highlighting places where training and adaptation efforts can be most effective.

CIP is coordinating further development of ILCYM and  its application to a wider range of insects in a new project. Collaborators include the International Centre of Insect Physiology and Ecology, the International Institute of Tropical Agriculture (IITA), the University of Hohenheim, Germany, under the CGIAR System-wide Program on Integrated Pest management, and partners at national agricultural research institutes and universities in Africa.

Link to CIP webpage.

Link to CGIAR System-wide Program on Integrated Pest Management (SP-IPM) report page.

Link to CGIAR’s climate change page.

Link to datasheet on potato tuber moth in the Plantwise knowledge bank.