Slicing Into The Bread Wheat Genome

Bread wheat (Triticum aestivum) is a globally important crop that accounts for 20% of the calories consumed by the world’s human population. Major work is underway to increase wheat production by expanding knowledge of the wheat genome and analysing key traits, however due to the large size and great complexity of the bread wheat genome progress has been slow. Now scientists from a number of organisations including the Centre for Genome Research at the University of Liverpool, the University of Bristol, University of California and the US Department of Agriculture’s Agricultural Research service have been working to sequence the genome and identify several classes of genes involved in crop productivity. The analysis provides a resource for improving this major crop by identifying variation in useful traits such as yield and nutrient content, thereby contributing to sustainable increases in wheat production.

Wheat (Triticum aestivum), one of the world's most important food crops © David Monniaux via Wikimedia Commons (License CC-BY-SA 3.0)

Wheat (Triticum aestivum), one of the world’s most important food crops © David Monniaux via Wikimedia Commons (License CC-BY-SA 3.0)

Read more of this post

The Model Plant

Arabidopsis thaliana

Arabidopsis thaliana is a model organism for plant science research

Charis Cook works for GARNet, a BBSRC-sponsored network that supports plant scientists in the UK by, among other things, linking researchers to each other and to the research councils, and providing an information hub for plant scientists. GARNet also has its own blog. Before working for GARNet, Charis was at Royal Holloway, University of London, as a post-grad student and then a post-doctoral researcher.

Arabidopsis thaliana, an unassuming Brassicaceae species with a short life cycle and tiny white flowers, was the subject of nearly 4000 peer-reviewed journal articles in 2011. A. thaliana is also the starting point of much of the research featured on the Plantwise blog, as plant molecular biology depends heavily on resources built on research on this small plant. Read more of this post

Banana genome revealed to aid crop yield improvement.

It is hoped this research will improve banana crop yields. (CC BY 3.0 Forest & Kim Starr)

Scientists working at CIRAD, a French research centre, have sequenced the banana genome for the first time. The researchers have been able to trace the evolution of the banana, as well as study the current genetic make-up of the species. This will help future research into why this crop is so susceptible to pests and disease. Improved varieties could then be developed, producing higher yields for farmers.

Read more of this post

Follow

Get every new post delivered to your Inbox.

Join 6,354 other followers